Research

Scroll through the 14 publications from CERID labs, PIs, and lab technicians publications that have hit the PubMed stands since the end of January! The scope of the publications is wide, covering a number of important pathogens and viruses from Neospara caninum to SARS-CoV-2. Read on for highlights from the abstract and the diseases studied in this month’s publication roundup by following the links! Publications are listed by the date published. All descriptions of the work have been paraphrased from the publications' respective abstracts and are cited as such.

May Publications

Koelle Lab Publication

The mycobacterium tuberculosis (TB) IFN-γ release assay (TB-IGRA) assesses peripheral blood cell release of IFN-γ upon ex vivo exposure to mitogen (IGRA-MT), TB antigen or a negative/nil control (IGRA-NL); IGRA-NL is a measure of spontaneous IFN-γ release (SIR). Here, we investigate the diagnostic associations of elevated SIR and the potential use of IGRA-NL as a novel biomarker in SLE. We analysed diagnostic code frequencies among 11 823 individuals undergoing TB-IGRA testing between 2010 and 2015 in a large urban US health-care system. To study the relationship between IGRA-NL and SLE, we identified 99 individuals with SLE and TB-IGRA test results then assessed correlations between IGRA-NL, normalized IGRA-NL (the quotient of IGRA-NL/IGRA-MT), disease manifestations and disease activity. We identified a discovery cohort of 108 individuals with elevated SIR (>5 s.d. above median) that was significantly enriched for a limited set of diagnoses, including SLE, TB infection, haemophagocytic lymphohistiocytosis and HIV infection. In SLE patients undergoing TB-IGRA testing, normalized IGRA-NL correlated better with disease activity than did anti-dsDNA or complement levels. This relationship appeared to reflect interactions between normalized IGRA-NL and the presence of acute skin disease, hypocomplementemia, fever and thrombocytopenia. Elevated SIR appears to be associated with a limited number of disease processes, including SLE. The diagnostic utility of SIR remains to be determined. IFN-γ activation, as measured by the TB-IGRA test, may offer a readily available tool for assessing disease activity in patients with SLE. Read the full article here!
 
Gale Lab Publication
The diversity of Ig and TCR repertoires is a focal point of immunological studies. Rhesus macaques (Macaca mulatta) are key for modeling human immune responses, placing critical importance on the accurate annotation and quantification of their Ig and TCR repertoires. However, because of incomplete reference resources, the coverage and accuracy of the traditional targeted amplification strategies for profiling rhesus Ig and TCR repertoires are largely unknown. In this study, using long read sequencing, we sequenced four Indian-origin rhesus macaque tissues and obtained high-quality, full-length sequences for over 6000 unique Ig and TCR transcripts, without the need for sequence assembly. We constructed, to our knowledge, the first complete reference set for the constant regions of all known isotypes and chain types of rhesus Ig and TCR repertoires. We show that sequence diversity exists across the entire variable regions of rhesus Ig and TCR transcripts. Consequently, existing strategies using targeted amplification of rearranged variable regions comprised of V(D)J gene segments miss a significant fraction (27-53% and 42-49%) of rhesus Ig/TCR diversity. To overcome these limitations, we designed new rhesus-specific assays that remove the need for primers conventionally targeting variable regions and allow single cell level Ig and TCR repertoire analysis. Our improved approach will enable future studies to fully capture rhesus Ig and TCR repertoire diversity and is applicable for improving annotations in any model organism. Read the full article here!
 
Murphy Lab Publication
Development of an effective vaccine is the clearest path to controlling the coronavirus disease 2019 (COVID-19) pandemic. To accelerate vaccine development, some researchers are pursuing, and thousands of people have expressed interest in participating in, controlled human infection studies (CHIs) with severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2). In CHIs, a small number of participants are deliberately exposed to a pathogen to study infection and gather preliminary efficacy data on experimental vaccines or treatments. We have been developing a comprehensive, state-of-the-art ethical framework for CHIs that emphasizes their social value as fundamental to justifying these studies. The ethics of CHIs in general are underexplored, and ethical examinations of SARS-CoV-2 CHIs have largely focused on whether the risks are acceptable and participants could give valid informed consent. The high social value of such CHIs has generally been assumed. Based on our framework, we agree on the ethical conditions for conducting SARS-CoV-2 CHIs (see the table). We differ on whether the social value of such CHIs is sufficient to justify the risks at present, given uncertainty about both in a rapidly evolving situation; yet we see none of our disagreements as insurmountable. We provide ethical guidance for research sponsors, communities, participants, and the essential independent reviewers considering SARS-CoV-2 CHIs. Read the full article here
 
Gale Lab Publication
Most systemic lupus erythematosus (SLE) patients are photosensitive and ultraviolet B light (UVB) exposure worsens cutaneous disease and precipitates systemic flares of disease. The pathogenic link between skin disease and systemic exacerbations in SLE remains elusive. In an acute model of UVB-triggered inflammation, we observed that a single UV exposure triggered a striking IFN-I signature not only in the skin, but also in the blood and kidneys. The early IFN-I signature was significantly higher in female compared to male mice. The early IFN-I response in the skin was almost entirely, and in the blood partly, dependent on the presence of cGAS, as was skin inflammatory cell infiltration. Inhibition of cGAMP hydrolysis augmented the UVB-triggered IFN-I response. UVB skin exposure leads to cGAS-activation and both local and systemic IFN-I signature and could contribute to acute flares of disease in susceptible subjects such as patients with SLE. Read the full article here!
 
Liles Lab Publication
Antibodies play a critical protective role in the host response to blood-stage malaria infection. The role of cytokines in shaping the antibody response to blood-stage malaria is unclear. Interferon lambda (IFNλ), a type III interferon, is a cytokine produced early during blood-stage malaria infection that has an unknown physiological role during malaria infection. We demonstrate that B cell-intrinsic IFNλ signaling suppress the acute antibody response, acute plasmablast response, and impede acute parasite clearance during a primary blood-stage malaria infection. Our findings demonstrate a previously unappreciated role for B cell intrinsic IFNλ-signaling in the initiation of the humoral immune response in the host response to experimental malaria. Read the full article here
 
Ojo and Van Voorhis publication
Bumped kinase inhibitors (BKIs) are potential drugs for neosporosis treatment in farm animals. BKI-1294 exposure results in the formation of multinucleated complexes (MNCs), which remain viable in vitro under constant drug pressure. We investigated the formation of BKI-1294 induced MNCs, the re-emergence of viable tachyzoites following drug removal, and the localization of CDPK1, the molecular target of BKIs. N. caninum tachyzoites and MNCs were studied by TEM and immunofluorescence using antibodies directed against CDPK1, and against NcSAG1 and IMC1 as markers for tachyzoites and newly formed zoites, respectively. After six days of drug exposure, MNCs lacked SAG1 surface expression but remained intracellular, and formed numerous zoites incapable of disjoining from each other. Following drug removal, proliferation continued, and zoites lacking NcSAG1 emerged from the periphery of these complexes, forming infective tachyzoites after 10 days. In intracellular tachyzoites, CDPK1 was evenly distributed but shifted towards the apical part once parasites were extracellular. This shift was not affected by BKI-1294. CDPK1 has a dynamic distribution depending on whether parasites are located within a host cell or outside. During MNC-to-tachyzoite reconversion newly formed tachyzoites are generated directly from MNCs through zoites of unknown surface antigen composition. Further in vivo studies are needed to determine if MNCs could lead to a persistent reservoir of infection after BKI treatment. Read the full article here!
 
Ojo and Van Voorhis publication
The apicomplexan parasite Neospora caninum causes important reproductive problems in farm animals, most notably in cattle. After infection via oocysts or tissue cysts, rapidly dividing tachyzoites infect various tissues and organs, and in immunocompetent hosts, they differentiate into slowly dividing bradyzoites, which form tissue cysts and constitute a resting stage persisting within infected tissues. Bumped kinase inhibitors (BKIs) of calcium dependent protein kinase 1 are promising drug candidates for the treatment of Neospora infections. BKI-1294 exposure of cell cultures infected with N. caninum tachyzoites results in the formation of massive multinucleated complexes (MNCs) containing numerous newly formed zoites, which remain viable for extended periods of time under drug pressure in vitro. MNC and tachyzoites exhibit considerable antigenic and structural differences. Using shotgun mass spectrometry, we compared the proteomes of tachyzoites to BKI-1294 induced MNCs, and analyzed the mRNA expression levels of selected genes in both stages. More than half of the identified proteins are downregulated in MNCs as compared to tachyzoites. Only 12 proteins are upregulated, the majority of them containing SAG1 related sequence (SRS) domains, and some also known to be expressed in bradyzoites Conclusions: MNCs exhibit a proteome different from tachyzoites, share some bradyzoite-like features, but may constitute a third stage, which remains viable and ensures survival under adverse conditions such as drug pressure. We propose the term "baryzoites" for this stage (from Greek βαρυσ = massive, bulky, heavy, inert). Read the full article here
 

April Publications

Gale Lab Publication

Pathogenic flaviviruses antagonize host cell Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling downstream of interferons α/β. Here, we show that flaviviruses inhibit JAK/STAT signaling induced by a wide range of cytokines beyond interferon, including interleukins. This broad inhibition was mapped to viral nonstructural protein 5 (NS5) binding to cellular heat shock protein 90 (HSP90), resulting in reduced Janus kinase-HSP90 interaction and thus destabilization of unchaperoned JAKs (and other kinase clients) of HSP90 during infection by Zika virus, West Nile virus, and Japanese encephalitis virus. Our studies implicate viral dysregulation of HSP90 and the JAK/STAT pathway as a critical determinant of cytokine signaling control during flavivirus infection. Read the full article here!

 

Arnold & Buckner Publication

In less than 6 months, coronavirus 2019 (COVID‐19) has spread from a marketplace in Wuhan, China, to over 150 countries and territories of the world. Therapeutics are desperately needed to reduce the morbidity and mortality of this pandemic disease. It has been reported that hydroxychloroquine is active against severe acute respiratory syndrome coronavirus 2 in vitro, and this finding was quickly supported by an open‐label, nonrandomized clinical trial that provided the first published clinical evidence hydroxychloroquine may be a treatment option. Read the full article here!

 

Arnold and WVV Lab Publication

We evaluated efficacy, pharmacokinetics (PK), and safety of clofazimine (CFZ) in HIV-infected patients with cryptosporidiosis. We performed a randomized, double-blind, placebo-controlled study. Primary outcomes in Part A were reduction in Cryptosporidium shedding, safety, and PK. Primary analysis was according to protocol (ATP). Part B of the study compared CFZ PK in matched HIV-infected individuals without cryptosporidiosis. Twenty Part A and 10 Part B participants completed the study ATP. Almost all Part A participants had high viral loads and low CD4 counts, consistent with failure of antiretroviral (ARV) therapy. At study entry, the Part A CFZ group had higher Cryptosporidium shedding, total stool weight, and more diarrheal episodes compared to the placebo group. Over the inpatient period, compared to those who received placebo, the CFZ group Cryptosporidium shedding increased by 2.17 log2Cryptosporidium per gram stool (95% upper confidence limit: 3.82), total stool weight decreased by 45.3 g (p=0.37), and number of diarrheal episodes increased by 2.32 (p=0.87). The most frequent solicited adverse effects were diarrhea, abdominal pain, and malaise. Three CFZ and 1 placebo subjects died during the study. Plasma levels of CFZ in participants with cryptosporidiosis were 2-fold lower than Part B controls. Our findings do not support the efficacy of CFZ for the treatment of cryptosporidiosis in a severely immunocompromised HIV population. However, this trial demonstrates a pathway to assess the therapeutic potential of drugs for cryptosporidiosis treatment. Screening persons with HIV for diarrhea, and especially Cryptosporidium infection, may identify those failing ARV therapy. Read the full article here!
 
Liles Lab Publication
This study demonstrates that initiation of the CFTR modulator ivacaftor in people with cystic fibrosis and susceptible CFTR mutations causes an acute reduction in blood monocyte sensitivity to the key proinflammatory cytokine IFN-γ. Read the full article here!
 
Gale Lab Publication
Pathogenic hantaviruses, genus Orthohantaviridae, are maintained in rodent reservoirs with zoonotic transmission to humans occurring through inhalation of rodent excreta. Hantavirus disease in humans is characterized by localized vascular leakage and elevated levels of circulating proinflammatory cytokines. Despite the constant potential for deadly zoonotic transmission to humans, specific virus-host interactions of hantaviruses that lead to innate immune activation, and how these processes impart disease, remain unclear. In this study, we examined the mechanisms of viral recognition and innate immune activation of Hantaan orthohantavirus (HTNV) infection. We identified the RIG-I-like receptor (RLR) pathway as essential for innate immune activation, interferon (IFN) production, and interferon stimulated gene (ISG) expression in response to HTNV infection in human endothelial cells, and in murine cells representative of a non-reservoir host. Our results demonstrate that innate immune activation and signaling through the RLR pathway depends on viral replication wherein the host response can significantly restrict replication in target cells in a manner dependent on the type 1 interferon receptor (IFNAR). Importantly, following HTNV infection of a non-reservoir host murine model, IFNAR-deficient mice had higher viral loads, increased persistence, and greater viral dissemination to lung, spleen, and kidney compared to wild-type animals. Surprisingly, this response was MAVS independent in vivo. Innate immune profiling in these tissues demonstrates that HTNV infection triggers expression of IFN-regulated cytokines early during infection. We conclude that the RLR pathway is essential for recognition of HTNV infection to direct innate immune activation and control of viral replication in vitro, and that additional virus sensing and innate immune response pathways of IFN and cytokine regulation contribute to control of HTNV in vivo. These results reveal a critical role for innate immune regulation in driving divergent outcomes of HTNV infection, and serve to inform studies to identify therapeutic targets to alleviate human hantavirus disease. Read the full article here!
 
Gale Lab Publication
Activation and viral control of the innate immune response are hallmarks of hepatitis C virus (HCV) infection and are major determinants of spontaneous clearance or progression to chronic infection and liver disease. In this review, we provide a contemporary overview of how HCV is sensed by the host cell to trigger innate immune activation and the mechanisms deployed by the virus to evade this response. Type I and III interferons (IFNs) are crucial mediators of antiviral innate immunity against HCV, and we specifically highlight the importance of IFN-λ host genetics for the outcome of HCV infection. Last, we focus on the proinflammatory responses elicited by HCV infection and describe our current understanding of how interleukin (IL)-1β signaling and cross talk between the IL-1β and IFN signaling pathways lead to sustained inflammation and increased risk of liver pathology. Read the full article here!
 
Murphy Lab Publication
 
Studies of Plasmodium sporozoites and liver stages require dissection of Anopheles mosquitoes to obtain sporozoites for experiments. Sporozoites from the rodent parasite P. yoelii are routinely used to infect hepatocytes for liver stage culture, but sometimes these cultures become contaminated. Using standard microbiological techniques, a single colony type of Gram-negative rod-shaped bacteria was isolated from contaminated cultures. Mass spectrometry and sequencing of the bacterial 16S ribosomal RNA gene identified the contaminant as Elizabethkingia spp. Based on sequence comparison and published studies of the Anopheles microbiome, the best match was E. anophelis. Culture contamination was not ameliorated by density gradient purification of sporozoites. However, the addition of vancomycin to the culture media consistently reduced contamination and improved culture outcomes as measured by liver stage parasite size. Thus, mosquito salivary gland-derived E. anophelis is identified a potential contaminant of Plasmodium liver stage cultures that can be mitigated by the addition of antibiotics. Read the full article here!